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A study is presented on the effects of smooth nanoparticles on the structure and elastic moduli of a polymer
matrix. Structural changes between the unfilled polymer matrix and the nanocomposite give rise to the forma-
tion of a glassy layer that surrounds the nanoparticles. Results for the effects of particle size and concentration
on the local and overall mechanical properties of the polymer are consistent with experimental macroscopic
observations. At the molecular level, it is found that dispersed, attractive nanoparticles alter the nonaffine
displacement fields that arise in the polymer glass upon deformation, thereby rendering the nanocomposite
glass less fragile.
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I. INTRODUCTION

Particulate fillers are used extensively by the polymer in-
dustry to alter the material properties of composite material.
The addition of particles can lead to the strengthening of
materials, thereby extending considerably their range of ap-
plicability. Supported by the ability to form arbitrary shapes
and the advent of efficient processing techniques, polymer
composites have found wide spread uses in everyday prod-
ucts. A significant amount of research has focused on the
study of material properties in nanocomposite polymeric sys-
tems. In this context, changes of properties such as the glass
transition temperature, mechanical constants, thermal expan-
sion coefficients, gas permeability and solvent resistance are
of fundamental interest and technological importance. Un-
derstanding the molecular mechanisms that lead to such
modifications in the properties of nanocomposites is essential
for design of materials having a desirable thermophysical
behavior.

Polymer nanocomposites can exhibit an increase on the
values of the mechanical properties �1–3� or a decrease �4,5�,
depending on the nature of nanoparticle-polymer specific in-
teractions. Numerous experiments have been performed to
investigate the mechanisms underlying such changes. One of
the prevailing theories is the so-called interaction zone
theory. Tsagaropoulos et al. �6� performed dynamical me-
chanical analysis �DMA� experiments for different nanocom-
posite systems. The stiffness of a viscoelastic material can be
separated into two components, each of which describe two
independent processes within the material namely, energy
storage and energy dissipation. The ratio of dissipated to the
reversibly exchanged work is known as “loss tangent” or
tan �. Tsagaropoulos et al. �6� have found two peaks in the
tan � versus temperature curves, suggesting the existence of
two glass transition temperatures; the first was attributed to
the polymer, and the second was attributed to the regions
surrounding the particles. Using NMR experiments, Berriot

et al. �7� concluded that, in rubber, silica fillers introduce
supplementary topological constraints, thereby creating a
layer of restricted chain mobility at the particle surface. The
strength of the interaction was found to influence the degree
of constraint. It was also found that the thickness of the
aforementioned layer of “immobilized segments” at the par-
ticle surface was highly dependent on temperature.

Some of the parameters that affect the final properties of a
composite are the particle size, the volume fraction and the
extent of agglomeration. Experiments suggest that as the size
of the particle decreases, the changes in mechanical proper-
ties become more pronounced �1,4,8�. “Large” microscale
fillers reinforce polymers regardless of polymer-particle in-
teraction. When the size of the particles decreases, this is no
longer the case; depending on their size and their interaction,
“nanoparticles” can increase or decrease the elastic moduli of
a composite material �9–12�. Empirical relations proposed in
the literature �9,13�, and effective medium models �14–18�,
connect the filler volume fraction to the shear or Young’s
modulus and the viscosity. These correlations are, by con-
struction, independent of particle size and are therefore un-
able to capture some of the physics that arise in nanocom-
posites. In effective medium approaches, the interfacial
region is ignored and the matrix-nanoparticle bonding is as-
sumed to be perfect. For large particle size fillers, these ap-
proaches explain a variety of experimentally observed phe-
nomena, including the dependence of elastic moduli and
viscosity on filler volume fraction. For small particles that
dependence is no longer universal �19�. A complicating issue
that arises in nanocomposites is the fact that particles often
agglomerate �20�, thereby changing the expected behavior
and posing limits to the change in strength that can be
achieved. Here we note that, recent studies �21� predict that
elastic moduli can increase to a larger extent when particles
agglomerate than when they are evenly dispersed.

Simulations provide a valuable tool for the study of nano-
composite systems. Although limited to the study of small
volumes of material, they can offer useful insights into the
spatial and structural arrangement of the particles in the
polymer matrix. Unfortunately, simulations of the mechani-
cal behavior of polymer nanocomposites have been scarce.
Off-lattice simulations by Abrams and Kremer �22� of a
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polymer melt interacting with a flat wall revealed a surface
induced layering in the monomer density profile. These local
density oscillations decrease as one moves away from the
surface to the bulk polymer matrix. Simulation studies of
polymers interacting with a wall by Aoyagi et al. and by
Bitsanis and Hadziioannou �23,24� also showed a peak in the
density near the wall that corresponds to an “adsorption”
layer, and found that in going from weak to strong interac-
tions between the wall and the polymer matrix the height of
the peak increased considerably.

Vacatello �25� performed simulations of particles dis-
persed in a polymer matrix; he found that polymer sites in
the immediate vicinity of the nanoparticle are arranged in
densely packed and ordered shells. Polymer segments adhere
to the particles and some chains are connected to different
particles, thereby forming “bridges.” Each chain visits the
interface layer of several particles and each particle can be in
contact with multiple chains. Even in the absence of strong
attractive interactions between particles and polymer chains,
Vacatello observed that the particles behave as physical
crosslinks. These crosslinks do not immobilize the polymer
chains, but they can reduce their diffusion rates considerably.
That view was complemented by recent molecular dynamics
simulations by Desai et al. �26�, who found that chain diffu-
sivity is enhanced �relative to that in the pure polymer� when
polymer-particle interactions are repulsive, and is reduced
when polymer-particle interactions are strongly attractive.
These authors reported that chain diffusivity is spatially in-
homogeneous, and adopts its pure-polymer value when the
chain center of mass is about one radius of gyration Rg away
from a particle’s surface. Hooper et al. �27� have determined
the effect of particle size on polymer-particle pair correla-
tions to be small. The influence of particle size was calcu-
lated to be quite large for the surface excess though, and a
transition was found from an entropic dewetting to enthalpic
wetting interface.

Simulations and experiments have shown that nanopar-
ticles can alter the dimensions of the chains vis-à-vis to those
of the unfilled polymer. Previous work �28� has revealed that,
in polymer solutions, the dimensions of a polymer chain
change appreciably as it approaches the particle surface. At
distances shorter than the mean size of the chain, an exten-
sion of the molecules takes place. It is also observed that the
relative deformation is much smaller for longer chains.
Changes in chain dimensions are confirmed by SANS ex-
periments �29� on PDMS with PS nanoparticles; a decrease
of the root-mean-square radius of gyration Rg is observed
when the polymer chains are approximately the same size as
the particles. A substantial increase of Rg is observed when
the chains are much larger than them. These results support
the view that filler particles cause an extension or contraction
of the chains, thereby changing the stress required for elastic
deformation.

Smith et al. �13� reported changes in the viscosity of a
model polymer melt upon addition of nanoparticles. Results
of simulations of polymers with attractive and neutral par-
ticles indicate that the viscosity increases above that of the
unfilled polymer. For repulsive particles, the viscosity de-
creases. Brown et al. �30� also found that, for repulsive in-
teractions between a particle and the polymer matrix, the

bulk modulus of the composite, calculated from the density
fluctuations, is lower than that of the pure polymer. Sharaf
and Mark �31� used Monte Carlo rotational isomeric states
simulations to define a reduced modulus and showed that it
increases when chains are filled with spherical nanoparticles.
They estimated a threefold modulus enhancement for their
model.

Böhme and de Pablo �32� �for polymeric nanostructures�
and Leonforte et al. �33� �for Lennard-Jones glasses� have
analyzed the local displacement of individual molecules
upon a homogeneous deformation. In both studies the local
displacements were found to be highly nonaffine. The result-
ing nonaffine displacement exhibit a characteristic length be-
low which the classical description of elasticity description
breaks down; this characteristic length can be traced back to
the “Boson peak� of the density of eigenstates �33�.

Previously, we have verified the appearance of a glassy
layer in the vicinity of a nanoparticle that is attractive to the
polymer segments �34�. In this work we extend our investi-
gation to the effect of particle size on the glassy layer thick-
ness. Furthermore, we present a systematic study of the ef-
fects of particle size, concentration, surface area, and
polymer chain length on the local mechanical properties of a
simple nanocomposite glass model. Off-lattice Monte Carlo
simulations of polymer matrices filled with spherical par-
ticles are employed. Mechanical properties are determined
directly from the stress fluctuations and from small deforma-
tions of our samples. Our results are consistent with previous
findings and augment the current understanding of nanocom-
posites by shedding light into the molecular origins of certain
observed behaviors that occur upon addition of fillers in
polymers. In particular, by examining the nonaffine local dis-
placements of polymer segments that arise when the material
is deformed, it is established that nanoparticles increase the
mechanical homogeneity of the polymer glass and decrease
its fragility.

II. METHODOLOGY

A. Simulations

In our simulations, the segments of the polymer mol-
ecules interact via a pairwise, 12-6 Lennard-Jones �L J� trun-
cated potential energy function, shifted at the cutoff rc
=2.5�,

Unb�r� = �4����

r
�12

− ��

r
�6	 − ULJ�rc� , r � rc,

0, r � rc,

 �1�

where � and � are the Lennard-Jones parameters for energy
and length, respectively, and r is the distance between two
interaction sites. The bonding energy between two consecu-
tive monomers in the same chain is given by

Ub�r� = 1
2k�r − ��2, �2�

with bond constant k=2�103� /�2. Nanoparticle-polymer
segment interactions are described through a potential energy
of the form �28�
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Unb
f �r�

= �4� f�� � f

r − Rf
�12

− � � f

r − Rf
�6	 − ULJ�rc� , r − Rf � rc

0, r − Rf � rc,



�3�

where Rf is the radius of a nanoparticle and � f =�. Two
types of interactions are considered, strongly “attractive”
�� f =10� and rc=2.5�� and “neutral” �� f =� and rc=2.5��. As
can be seen from the form of the potential in Eq. �3�, the
interaction between a particle and a monomer is taken at a
distance Rf �the radius of the filler� from the center of the
particle. In that way the interactions are accounted for from
the surface of the nanofiller.

The systems considered in this work consist of 450 chains
of N=32 beads, or 120 chains of N=120 beads. Simulations
are performed in the NPT ensemble. The pressure in all
simulations is kept constant at P=0.3 � /�3. All quantities are
reported in LJ units reduced with respect to the monomer �
and �.

A Monte Carlo method is used to simulate the systems of
interest to this work. Trial displacements include random
monomer and nanoparticle translations. Reptation moves are
also attempted, implemented within a configurational-bias
scheme to increase performance �35�. While reptation can be
effective in dilute systems of short chains, for intermediate to
long chain molecules it is essential to resort to trial moves
capable of rearranging inner segments of the polymer. To
further enhance sampling, we also use internal rebridging
trial moves �36�, in which a number of consecutive mono-
mers of a chain are selected and deleted. The deleted part of
the chain is then reconstructed using configurational bias. We
also implement double-bridging trial moves �37,38�; these
moves consist of a simultaneous exchange of distinct parts of
two neighboring chains, and are highly effective for configu-
rational sampling of long chain molecules. Double bridging
allows for effective equilibration of the systems considered
in this work �37�. It is particularly important in nanoparticle-
reinforced polymers, where sampling the correct structure
and arrangement of long chain molecules around small nano-
particles can be particularly demanding.

All simulations in our study were performed for at least
9�104 Monte Carlo cycles, where a cycle consists of
5�104 trial moves. The maximum distance for the random
displacement moves was chosen at each temperature so that
an acceptance ratio of approximately 30% was achieved.
Moving to lower temperatures and consequently higher den-
sities, rebridging moves were performed with decreasingly
fewer particles to maintain a reasonable acceptance probabil-
ity. For the double bridging move the acceptance ratio is
0.005% if one segment is deleted and rebuilt �for proposed
orientations for the configurational bias scheme at a tempera-
ture of T=0.6�.

B. Formula for mechanical properties

The elastic moduli of solids can be calculated by measur-
ing the thermal fluctuations of the internal stress; local me-

chanical properties can be determined by dividing the simu-
lation cell into smaller cubes of length l �39�. In order to find
the local elastic constants, a local stress must be defined. By
performing a microscopic momentum balance flux balance
on a cube m, the following expression for the local stress
tensor can be derived:

�ij
m = 	mkBT�ij −

1

l3 �
a
b

� �U

�rab� ri
abrj

ab

rab

qab

rab , �4�

where 	m is the number density of cube m, kB is Boltzmann’s
constant, T is the temperature of the system, and �ij is the
Kronecker delta. Subscripts denote Cartesian coordinates; U
is the pairwise additive potential energy function and rab is
the distance between two interaction sites a and b. If the
vector joining a and b, ri

ab, passes through cube m the frac-
tion of the line segment that lies inside the cube defines the
variable qab. If the vector does not pass through the cube
then qab=0. Integration of �ij

m over the entire volume gives
the internal stress tensor of the bulk system.

The local elastic modulus tensor, Cijkl
m , is related to the

internal stress fluctuations through the second derivative of
the free energy with respect to the strain �39,40�,

Cijkl
m = Cijkl

Bm − Cijkl
Sm + Cijkl

Km, �5�

where

Cijkl
Bm =

1

l3� �
�
�

� �2U

�rab2 −
1

rab

�U

�rab� ri
abrj

abrk
abrl

ab

�rab�2

qab

rab , �6�

Cijkl
Sm =

V

kBT
���ij

m�kl� − ��ij
m���kl�� , �7�

Cijkl
Km = 2�	m�kBT��il� jk + �ik� jl� , �8�

and where V is the volume of the system. The brackets de-
note a canonical ensemble average; Cijkl

Bm represents the in-
stantaneous elastic modulus for any given configuration un-
der a uniform, infinitesimally small strain �the so-called Born
term�. The contributions of internal particle motions �caused
by the thermal fluctuations� to the elastic moduli are ac-
counted by the stress-fluctuation term, Cijkl

Sm . The contribution
of the kinetic energy to the moduli is denoted by Cijkl

Km.

C. Nonaffine displacement field

In this section we describe the technique used to calculate
the nonaffine displacement field that arises when a material
is deformed. The energy of a configuration is first minimized.
A deformation is then imposed by rescaling all the atomic
coordinates in an affine manner. The energy of this affinely
deformed configuration is minimized again, keeping the
simulation box shape and volume constant. This process
yields particle or segmental displacements relative to the af-
finely deformed state. This analysis is performed on the pure
polymer and nanocomposite systems of volume fraction
�0.07 and particle size Rf =2�. The configurations used
were created with two methods. One set of four configura-
tions was obtained by gradual cooling of the system at con-
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stant pressure. The second set of four configurations was
obtained by equilibrating the ones received after the cooling
process under constant volume but at a high temperature of
T=1.0. We next prepared the minimum-energy configura-
tions from both sets using conjugate gradient minimization.
Uniaxial deformations of strain �ii, where ii=xx, yy or zz,
were implemented by rescaling all the coordinates and the
corresponding box length affinely. The energy of the system
was minimized again, giving rise to the nonaffine displace-
ment field u�r�. No differences were found in the resulting
nonaffine displacement field for the two different methods
outlined above.

III. RESULTS AND DISCUSSIONS

A. Structural analysis

The density profile of the monomers is given in Fig. 1 as
a function of r−Rf, the distance from the surface of the par-
ticle. Distinct peaks are indicative of layering of the polymer
around the particles. The local density of polymer segments,
as expected, is enhanced near the surface of the particle. The
attractive case �the system for which interactions between the
monomers and the particle are strongly attractive� shows a
clear density increase at the surface of the particle compared
to the neutral case �where monomer-particle interactions are
relatively weak�. Our results are in agreement with literature
findings for polymers near a wall �22–24� and near spherical
particles �25,30,41–43�. When temperature decreases, the
heights of the peaks increase for all systems, as shown pre-
viously for attractive and neutral particles �34�.

Previous simulations of polymers near walls �24� and
spherical particles �41� have also shown that the concentra-
tion of chain ends in the vicinity of neutral surfaces is higher
than that of other monomers. Our simulations reveal a simi-
lar chain-end segregation effect. As shown in Fig. 2, for neu-
tral interactions, the chain ends exhibit a propensity to reside
near the particle surface. For attractive interactions, the
larger particles �Rf =2.0�� exhibit a concentration of chain
ends near the particle surface that is significantly smaller

than that observed for the same size fillers with neutral in-
teractions. For small attractive particles however, Rf =1.0�, a
behavior similar to that observed for the neutral interactions
is found. This is suggestive of a characteristic size beyond
which the effects of nanoparticles start to change �44�.

Polymer chains assume a distinct orientation near
the particles. The second Legendre polynomial is defined
as P2= 1

2 �3 cos2 �−1�, where the angle � is formed by
the vector from the center of the nanoparticle to monomer
i, and the vector between i and the next monomer
on the same chain, i+1. The average orientation of the
segments is defined by taking the ensemble average
�P2�. A value of �P2�=0 indicates a random orientation
��P2�=�0

� 1
2 �3 cos2 �−1�sin �d� /�=0�, while a value of −0.5

indicates perfect tangential alignment. Figure 3 shows the
orientation of segments for both neutral and attractive inter-
actions. Moving away from the surface of the particle to the
bulk polymer, �P2� decreases, reaching a minimum, and then
increases to a maximum. Beyond this feature, some oscilla-
tions are observed that gradually decay to �P2�=0. For stron-
ger polymer-particle interactions the first minimum gradually
decreases. Other off-lattice simulations have also reported
the tendency of segments to lie parallel to the surface for
both wall �22� and spherical-particle �28,30� systems.

A measure of the affinity of monomers for packing around
a particle is the “surface excess” defined as �27�

�s = R−2�
R

�

drr2hpc�r� , �9�

where hpc�r�=gpc�r�−1. A negative value of this variable in-
dicates a tendency of the polymer to dewet the nanoparticle
surface, while a positive value suggests that the polymer
wets the surface of the particle. In Fig. 4 the “surface excess”
is plotted for different particle sizes. For large particles the

FIG. 1. Filler-monomer pair distribution function g12�r� for the
various types of interactions considered in this work. All results are
shown as a function of the distance r−Rf from the surface of the
nanoparticle at T=0.6, P=0.3, and N=32. The layers are well de-
fined and the effect is more pronounced for attractive particles.

FIG. 2. Normalized filler-chain end pair distribution function
g12

end�r� /g12�r� for both types of interaction studied �neutral, attrac-
tive� at T=0.6, P=0.3, and N=32 as a function of the distance
r−Rf from the surface of the nanoparticle. Chain end segregation to
the surface is apparent for neutral interactions Rf =2.0�, while for
attractive fillers of the same size the chain end concentration is
significantly smaller close to the particle. For small attractive par-
ticles, Rf =1.0�, similar behavior to the neutral interactions for filler
size Rf =2.0� is observed.
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polymer wets the surface and �s is positive �27�. When the
particle size decreases the “surface excess” also decreases
and for particles of Rf =0.5 we find that the sign of �s
changes. This indicates a transition from enthalpic wetting to
entropic dewetting when particles become comparable to the
monomer size.

B. Elastic constant calculations: single particle system

Few studies of nanocomposite systems have examined the
mechanical behavior of the material. Furthermore, available
reports have focused on the calculation of bulk mechanical
properties, generally by applying a load or a homogeneous
deformation to a sample. In contrast to previous works, the
methodology employed here permits direct calculation of the
local mechanical properties of the material from the sponta-
neous fluctuations of the stress, thereby offering unique in-
sights into the elastic moduli of our model nanocomposites.
Figure 5 shows the local shear modulus as a function of the
distance from the surface of the filler for a polymer matrix
containing an individual particle. The shear modulus is de-

fined as the average G= �C44+C55+C66� /3 of the compo-
nents of the elastic matrix. For the attractive system, the
local magnitude of G increases in the vicinity of the particle
surface, suggesting the existence of a “glassy” layer, even in
the melt regime. This layer with enhanced mechanical prop-
erties is reminiscent of the “glassy” layer that has been in-
voked to interpret experimental data �3�. It has recently been
shown that this layer does not homogeneously surround the
nanoparticle, but that it consists of a preponderance of do-
mains having a large positive modulus �34�.

As mentioned earlier, the chain dimensions are altered in
the vicinity of a nanoparticle, and the magnitude of such
changes depends on the chain length. It is therefore of inter-
est to consider whether chain length has an effect on the
glassy layer thickness. To that end, we also performed local
elastic constant calculations for a system of chains of 120
segments. As shown in Fig. 5, the glassy layer thickness does
not exhibit any dependence on the polymer molecular
weight. The same is true for the values of the shear modulus
in the glassy layer. They remain approximately the same,
regardless of chain length.

It is generally perceived that addition of nanoparticles to a
polymer matrix has a more pronounced effect than addition
of micron-sized particles �1�. Here we consider the effect of
particle size on the mechanical properties and the thickness
of the glassy layer. We find that, as the particle size de-
creases, the thickness and the values of the shear modulus of
the glassy layer decrease �see Figs. 6�a� and 6�b��. This trend
suggests that once the particle size reaches a specific value, it
no longer behaves as a constraint for the polymer chains.
This behavior can be partly explained in terms of the particle
surface chain-end concentration shown in Fig. 2 and its re-
lation to the free volume. As particle size decreases, the
chain end concentration increases at the particle surface,
thereby generating more free volume at the surface of the
particle and more space for the particles and the polymer
segments to move. This larger free volume reduces the en-
hancement of elastic constants observed for large particles.
The decrease of the glassy layer thickness can also be related
to the decrease of the surface excess as shown in Fig. 4. For
small particles comparable to the polymer segments the sur-

FIG. 3. Mean second Legendre polynomial P2 between the vec-
tor from the center of the nanoparticle to the monomer i and the
vector between i and the next monomer in the same chain i+1 at
T=0.6, P=0.3 and N=32. �P2� is given as a function r−Rf from the
surface of the particle. The preferential alignment of the chains
parallel to the surface of the particle is observed.

FIG. 4. Surface excess as a function of particle size at T=0.6,
P=0.3, and N=32. A transition from enthalpic wetting ��s�0� to
entropic dewetting ��s
0� is apparent at approximate Rf =0.75.

FIG. 5. Distribution of the local shear modulus with respect to
the distance r from the center of the nanoparticle for attractive
particles for two polymer chain lengths �N=32,120� at T=0.2 and
P=0.3.
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face excess becomes negative, thereby causing the polymer
to dewet the surface and causing the glassy layer to almost
disappear.

C. Elastic constant calculations: many-particle systems

Experimental evidence suggests that, as the concentration
of nanoparticles increases, the observed changes of a com-
posite’s mechanical properties become more pronounced.
More specifically, experimental data are often described by a
simple quadratic empirical relationship �9,13� of the form

GNC

GPP = 1 +
5

2
p + 4.94p

2, �10�

where GNC is the shear modulus of the composite, GPP is the
shear modulus of the unfilled �pure� polymer matrix and p
is the volume fraction of the particles. A similar expression
exists �9,13� for the Young’s modulus,

E =
C̄44�3C̄12 + 2C̄44�

C̄12 + C̄44

, �11�

where C12= �C12+C13+C23� /3 and C44= �C44+C55+C66� /3,

ENC

EPP = 1 + 5
2p + 14.1p

2. �12�

Figure 7 confirms that Eq. �10� describes qualitatively our
data. However, as it does not include any dependence on

FIG. 6. �a� Distribution of the local shear modulus with respect
to the distance r from the center of the nanoparticle for attractive
particles of different size at T=0.2, P=0.3, and N=32. �b� Glassy
layer thickness with respect to particle size at T=0.2, P=0.3, and
N=32.

FIG. 7. Effect of volume fraction of nanoparticles of Rf =2.0�
on shear modulus at T=0.2, P=0.3, and N=32.

FIG. 8. �Color online� 3D distribution of domains of high posi-
tive shear modulus for the nanocomposite of particles of size
Rf =2.0� and the pure polymer glasses at T=0.2, P=0.3, �0.07,
and N=32.
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particle size or interfacial properties, Eq. �10� does not re-
produce the observed differences between attractive and neu-
tral particles.

The nonlinearity of the relationship between volume frac-
tion and elastic moduli suggests that a simple mixing rule
�e.g., an average of the glassy layer mechanical properties
and those of the pure polymer� is insufficient to describe the
behavior of the composite systems considered in this work.
A color map of the local shear modulus of the pure polymer
glass and the nanocomposite for the system of attractive par-
ticles is presented in Fig. 8. The elastic moduli of polymeric
glasses are inhomogeneous, as shown in previous work
�34,39�. For the unfilled polymer, domains of high modulus
are distributed uniformly throughout the system. In the nano-
composite material, the population of high-modulus domains
is higher near the particles. Furthermore, particles that are
close to each other give rise to the formation of regions of
high modulus that span or bridge the entire space between
them.

In order to investigate this behavior further we also per-
formed molecular dynamics calculations in the NVE en-
semble. The velocities of the particles and segments were at
first initialized at a temperature T=0.00 001, and the systems
were equilibrated for 50 000 steps. The equilibration period
was followed by a production run of 200 000 steps with

timestep �t=0.001. The particle and segment positions were
sampled every 100 steps. The average displacement from the
center of mass of the particles and the segments can be re-
lated experimentally to the Debye-Waller factor �45�. The
average displacement of the polymer segments of the nano-
composite ��rNC

2 �=0.001 22 was found to be smaller than for
the pure polymer ��rPP

2 �=0.001 28, consistent with the
higher values of moduli of the nanocomposite compared to
the pure polymer. For the nanocomposite, we calculate the
local average displacement of segments in a shell of 2.0�
surrounding the nanoparticle and also in a cylinder of 2.5�
diameter between nanoparticles that are closer than 9�. We
find that the displacement in the shell ��rNC shell

2 �=0.000 92
is significantly smaller than in the bulk of the material, in
agreement with our previous findings of glassy-layer forma-
tion around the particle. The region of the cylinder between
the particles appears to also exhibit smaller displacements,
��rNC cylinder

2 �=0.001 04, which can be related to the higher
population of high-moduli domains between the particles
that appear as bridges in Fig. 8.

FIG. 9. Investigation of the effect of surface area and volume
fraction of the nanoparticles on the �a� shear modulus and �b�
Young’s modulus of nanocomposites. The squares represent con-
stant surface area results using Eqs. �10� and �12� for the calculation
of G and E for each particle size. �Constant volume fraction
=0.024 and constant surface area a=0.011�−1 at T=0.2, P=0.3,
and N=32.�

FIG. 10. Effect of particle size on the distribution of the local
shear modulus G with respect to particle size keeping the volume
fraction constant �=0.023� at T=0.2, P=0.3, and N=32.

FIG. 11. �Color online� Stress strain curve for both pure poly-
mer and nanocomposite system with a strain rate of 5�10−4/step.
The nanocomposite curve is at all times higher than the pure poly-
mer indicating a stronger material. The plastic events �drops in the
stress� occur for the nanocomposite in higher strains than pure for
the unfilled polymer suggesting a tougher material. The difference
in total energy is plotted with respect to the strain. It is clear that the
energy strain curve is not as sensitive to the plastic events.
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We now address the significance of particle size for nano-
composite behavior, which is directly related to the impor-
tance of interface effects �1,4,8�. For small particles, the vol-
ume fraction is not sufficient to quantify the mechanical
properties of nanocomposites, and the surface area per unit
volume becomes another relevant variable. We performed
calculations in which the number of nanoparticles and their
size were varied in a systematic manner in order to quantify
the relative importance of volume fraction and surface area.
One parameter, surface area or volume fraction, is kept con-
stant while the other changes. We characterize the elasticity
of the system through the shear modulus, G and the Young’s
modulus, E.

The number of particles and particle diameter were
modified in such a way as to keep constant the volume
fraction �=0.024� or the surface area per unit volume,
a=0.011�−1. At constant volume fraction, it is clear that de-

creasing the particle size �hence increasing the surface area�
results initially in an increase of G and E, as can be seen in
Fig. 9. However, once the particles become sufficiently
small, both shear and Young’s modulus start to decrease.
These results suggest that particles cease to act as topological
constraints when their size becomes comparable to that of
the monomer. This cessation of constraining can be related to
an increase in the “mobility” of the particles, which is con-
nected to the free volume via the chain end concentration
�see Fig. 2� and to the decrease of surface excess �see Fig. 4�.
Evidence for the existence of such a characteristic length was
also provided by the experiments of Roberts et al. �10�,
where even more dramatic changes on the mechanical prop-
erties were reported. Larger particles were found to behave
as reinforcing agents, while smaller particles as plasticizers.
In our systems, the particle-polymer interaction is strong and
we do not observe such a pronounced decrease of the me-

FIG. 12. Typical snapshots of the nonaffine displacement field u�r� for the unfilled polymer in layers of thickness 1� obtained after
applying a uniaxial deformation of strain 10−5.
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chanical properties. The filled polymer exhibits higher elastic
moduli than the unfilled polymer for any volume fraction or
surface area, and there is no evidence of plastification.

At constant surface area, increasing the number of par-
ticles causes the volume fraction to decrease. The modulus
decreases monotonically. The simulation results for the
Young’s modulus are always higher than the ones predicted
from the empirical relationship �see Fig. 9�b��. For the shear
modulus a crossover exists, and at high particle size the em-
pirical relationship underpredicts the simulation results while
for extremely small particles it overpredicts them �see Fig.
9�a��.

We also examined the distribution of the local shear
modulus for the constant particle volume fraction systems.
As shown earlier, the nanocomposite is found initially to
exhibit higher values of shear and Young’s modulus when
the particle radius is decreased and the surface area is in-

creased, followed by a decrease of the values of the moduli
below a characteristic particle size. At the same time, for a
given level of resolution, the distribution of local shear
modulus becomes broader when the particle size is in-
creased, as seen in Fig. 10. This suggests that, for constant
particle volume fraction, regardless of the reinforcement of
the material, the level of mechanical inhomogeneity is in-
creased by decreasing particle size.

D. Nonaffine displacement field

We perform calculations similar to those used by Malan-
dro et al. �46� for a glass model. We apply a uniaxial defor-
mation to both systems in steps of strain 5�10−4 and after
each affine deformation, we minimize their energy while
keeping the shape and volume constant. We calculate the
stress for each of these steps; a stress strain curve is obtained

FIG. 13. Typical snapshots of the nonaffine displacement field u�r� for the nanocomposite system of volume fraction �0.07 and
particle size Rf =2� in layers of thickness 1� obtained after applying a uniaxial deformation of strain 10−5.
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and plotted in Fig. 11. The curve for the nanocomposite is at
all times higher than that for the pure polymer, indicating a
stronger material. The sudden drops of stress that appear in
the stress strain curve have been related in the literature �46�
to plastic events. These plastic events occur for the nanocom-
posite at higher strains than for the pure polymer and are
more rare. This result suggests that the nanocomposite is not
only a stronger material but also tougher. The difference in
total energy is plotted for both systems with respect to the
strain. It is clear that the energy strain curve does not capture
all the plastic events.

We now turn our attention to the analysis of deformation
of the material. The nonaffine displacements are determined
according to the procedures outlined in the Methodology
section. Typical realizations of such fields for a strain value

of 10−5 are presented in Figs. 12 and 13, where cross sections
�slabs� of configurations are shown for both systems �pure
polymer and nanocomposite�. In Figs. 14�a� and 14�b� we
plot only the higher 10% nonaffine displacements. A simple
visual inspection of these fields reveals that the higher non-
affine displacements tend to form clusters. Figure 15 shows
the pair distribution corresponding to these displacements;
which also shows that these displacements exhibit a propen-
sity to occur near each other, giving rise to the formation of
“clusters” of nonaffinely displaced segments. This effect is
more pronounced for the nanocomposite system.

The participation ratio for the nonaffine displacements
�33�, defined by

Pr =
1

N

��i
ui

2�2

�i
�ui

2�2
, �13�

where i is the particle index and N the number of particles
and segments, can be used to measure the critical strain
where the transition from elastic to plastic regime occurs.
Large values of participation ratio indicate that elastic non-
affine displacements involve a substantial fraction of the par-
ticles. When the deformation exceeds the plastic threshold,
Pr falls rapidly, indicating that a plastic deformation pro-
ceeds via highly localized events. It is clear from Fig. 16 that
both systems exhibit a similar behavior. However, at all
times, the curve corresponding to the nanocomposite system
exceeds that of the pure polymer. By comparing the partici-
pation ratio curves for the two systems it becomes apparent
that the critical strain for the nanocomposite system is larger
than that of the pure polymer. This finding suggests that in-
clusion of nanoparticles creates a material �nanocomposite�
less susceptible to failure than the pure polymer. The elastic
character of these deformations was verified by imposing a
reverse deformation that compresses the system back to its
initial shape. The residual field indicated by ��v�� was calcu-
lated; for a completely reversible deformation ��v�� should

FIG. 14. �a� 3D plot of the 10% higher nonaffine displacements
for the unfilled polymer. �b� 3D plot of the 10% higher nonaffine
displacements for the nanocomposite. Nonaffine displacements ob-
tained for a uniaxial deformation of strain 10−5.

FIG. 15. Pair distribution of the nonaffine displacements. We
refer as max to the 10% highest non-affine displacements. From the
distribution of the highest nonaffine displacements it is clear that
these displacements exhibit a propensity to occur near each other
forming clusters of nonaffinely displaced segments. For the nano-
composite system this effect is more pronounced. Nonaffine dis-
placements obtained for a uniaxial deformation of strain 10−5.
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be zero. It is clear from the results in Fig. 16 that the residual
field is negligible below the critical strain, thereby emphasiz-
ing that these deformations �of strain below the critical� are
elastic and reversible.

To further analyze the nature of nonaffine displacements,
we focus on a strain of �=10−5, for which the participation
ratio for both the systems is relatively high but the systems
are still in the elastic regime �33�. For this strain value, the
correlation of the nonaffine field is analyzed by calculating
the function

C�r� =
�u�r�u�0��

�u�0�2�
�14�

for all segments separated by a distance r. This correlation
function is shown in Fig. 17; it is related to the fragility and

mechanical stability of a material. Several interesting fea-
tures are detected. First, we note that the correlation length,
�, for the polymeric systems considered in this work is sig-
nificantly smaller than that observed in the Lennard-Jones
binary glasses considered by Leonforte et al. �33�. Second,
we find that the correlation length corresponding to the nano-
composite system is smaller ��NC=7.5� than that of the pure
polymer ��PP=8.0�, suggesting that the system is more me-
chanically homogeneous and stable �47�. This is consistent
with the narrower distribution of local shear moduli observed
for the nanocomposite systems. Leonforte et al. �33� found
that for a binary glass, the frequency of the boson peak is
correlated with �=cT2� /�, where cT is the transverse veloc-
ity of sound, equal to cT=�G /	, where G as mentioned ear-
lier is the shear modulus and 	 is the density. Using this
relation one can calculate an estimate for the value of the
frequency of the boson peak for the two systems, and obtain
a measure of the material’s fragility �48�. The transverse ve-
locity of sound cT has a value of 4.30 for the nanocomposite
system, while for the pure polymer it is 3.84. From these

FIG. 16. Participation ratio Pr as a function of applied strain
�solid lines� and residual plastic displacement field ��v�� �dashed
lines� obtained by reverse transformation back to the original mac-
roscopic shape. Residual fields below 10−8 are due to numerical
inaccuracies and the field is considered as reversible. For the nano-
composite system the particle volume fraction is �0.07 and par-
ticle size Rf =2�.

FIG. 17. Correlation function C�r� of the nonaffine displace-
ment field as a function between pairs of distance r for the unfilled
polymer and the nanocomposite system of volume fraction 
�0.07 and particle size Rf =2�. For comparison of the peaks of the
correlation functions, the polymer segment pair distribution func-
tion g�r� is plotted and the polymer correlation function not count-
ing contributions between nonaffine displacements of segments be-
longing in the same chain. Inset: Magnification of long-range
results.

FIG. 18. �a� Correlation function C�r� of the nonaffine displace-
ments as a function between pairs of distance r starting from poly-
mer beads lying in a shell of thickness 1.5� around the particle with
the rest of the system on the opposite side of the particle separated
by an imaginary surface passing as shown in the figure. Also the
correlation starting from the filler is plotted and for comparison the
total nanocomposite correlation function counting all contributions
is given. Nonaffine displacements obtained for a uniaxial deforma-
tion of strain 10−5. �b� Distribution of magnitude of residual plastic
displacements around a nanoparticle. Residual plastic displace-
ments obtained from reverse deformation that compresses the sys-
tems back to their initial shape upon a uniaxial deformation of
strain 10−5.
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data and the results for the correlation length ��NC=7.5 and
�PP=8.0�, we find that the frequency of the boson peak is
�NC=3.6 for the nanocomposite and, for the pure polymer, it
is �PP=3.0. As shown by Chumakov et al. �48�, these values
for the boson peaks imply that the nanocomposite is less
fragile than the polymer. Novikov et al. �49� have correlated
the fragility of materials to their mechanical properties,
particularly the ratio of the bulk to the shear modulus K /G.
The higher this ratio, the more fragile the material is. For the
two systems considered in this section, we estimate
�K /G�NC=3.15 and �K /G�PP=3.45. Again we arrive at the
same conclusion, namely the fact that the nanocomposite
system is stiffer �has higher elastic moduli�, less fragile, and
less anharmonic �in the “Angell� sense� than the pure poly-
mer �50–52�.

We conclude our investigation of nanocomposites with a
calculation of two correlation functions: one from the filler
with the rest of the system, and a second one from a shell of
polymer beads around the filler with the rest of the system.
The shell thickness is chosen to be 1.5�. As shown in Fig.
18�a�, a polymer segment in the shell is chosen and its cor-
relation with part of the system is calculated. This procedure
ensures that the nanoparticle that is surrounded by this shell
is not included in the analysis. The chosen part is the one on
the opposite side of the particle separated by an imaginary
plane tangent to the particle surface. It is found that the filler-
polymer correlation length is higher than that of the pure
polymer, while the glassy layer-polymer selection correlation
length is smaller than the one of the nanocomposite system.
This suggests that the layer surrounding the particles is more
mechanical homogeneous than the rest of the polymer. To
justify this analysis we also calculated the distribution of the
magnitude of residual plastic displacements around a nano-
particle. The residual plastic displacements were obtained
from reverse deformations that compress the system back to
its initial shape after a uniaxial deformation of strain �10−5.
As seen in Fig. 18�b�, close to the particles the magnitude of
the residual displacements appears to be smaller than away
from it. This verifies that the material closer to the particles
is more mechanically homogeneous than the rest of the poly-
mer.

IV. CONCLUSIONS

With the aid of MC simulations changes of mechanical
properties when nanoparticles are being added to the poly-
mer matrix were explored. By varying the polymer-
nanoparticle interaction we were able to arrive to conclusions
necessary for the design of nanocomposite systems with de-
sired mechanical properties. Attractive nanoparticles were
found to increase the Young’s modulus compared to the un-
filled polymer. An increase of the local C44 at the vicinity of
the particle is indicative of a glassy layer. The effect of par-
ticle size and chain length on the glassy layer and that of
surface area and volume fraction were investigated. When
the particle size reaches a certain value the particles cease
being topological constraints. Finally from the calculation of
the nonaffine displacement field a useful insight was ob-
tained. The fragility of the nanocomposite glass is lower than
the unfilled polymer. Despite the simplicity of the model our
results qualitatively give a clear view of changes induced by
nanoparticle addition in a polymer matrix.

Our findings in this work are closely related to the so-
called interaction zone theory. An alternative theory for the
origin of increased strength is the bridge theory, which in-
volves the particle chain network formation. When the
particle-to-particle distance is small or comparable to less
than two radius of gyration radii then a chain can wrap
around a particle and at the same time wrap around another
creating a network that as is proposed from the bridge for-
mation theory will increase the mechanical properties of the
matrix. Ongoing work involves simulation of polymers with
different chain lengths and many nanoparticle composite sys-
tems so that the bridge formation theory can be investigated.
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